
Google Dorks: Analysis, Creation,
and New Defenses

Flavio Toffalini1(B), Maurizio Abbà2, Damiano Carra1, and Davide Balzarotti3

1 University of Verona, Verona, Italy
flavio.toffalini@gmail.com, damiano.carra@univr.it

2 LastLine, London, UK
mabba@lastline.com

3 Eurecom, Sophia-Antipolis, France
davide.balzarotti@eurecom.fr

Abstract. With the advent of Web 2.0, many users started to maintain
personal web pages to show information about themselves, their busi-
nesses, or to run simple e-commerce applications. This transition has
been facilitated by a large number of frameworks and applications that
can be easily installed and customized. Unfortunately, attackers have
taken advantage of the widespread use of these technologies – for exam-
ple by crafting special search engines queries to fingerprint an application
framework and automatically locate possible targets. This approach, usu-
ally called Google Dorking, is at the core of many automated exploitation
bots.

In this paper we tackle this problem in three steps. We first perform
a large-scale study of existing dorks, to understand their typology and
the information attackers use to identify their target applications. We
then propose a defense technique to render URL-based dorks ineffective.
Finally we study the effectiveness of building dorks by using only com-
binations of generic words, and we propose a simple but effective way to
protect web applications against this type of fingerprinting.

1 Introduction

In just few years from its first introduction, the Web rapidly evolved from a
client-server system to deliver hypertext documents into a complex platform to
run stateful, asynchronous, distributed applications. One of the main character-
istics that contributed to the success of the Web is the fact that it was designed
to help users to create their own content and maintain their own web pages.

This has been possible thanks to a set of tools and standard technologies
that facilitate the development of web applications. These tools, often called
Web Application Frameworks, range from general purpose solutions like Ruby
on Rails, to specific applications like Wikis or Content Management Systems
(CMS). Despite their undisputed impact, the widespread adoption of such tech-
nologies also introduced a number of security concerns. For example, a severe
vulnerability identified in a given framework could be used to perform large-scale

c© Springer International Publishing Switzerland 2016
J. Caballero et al. (Eds.): DIMVA 2016, LNCS 9721, pp. 255–275, 2016.
DOI: 10.1007/978-3-319-40667-1 13

256 F. Toffalini et al.

attacks to compromise all the web applications developed with that technology.
Therefore, from the attacker viewpoint, the information about the technology
used to create a web application is extremely relevant.

In order to easily locate all the applications developed with a certain frame-
work, attackers use so-called Google Dork Queries [1] (or simply dorks). Infor-
mally, a dork is a particular query string submitted to a search engine, crafted
in a way to fingerprint not a particular piece of information (the typical goal of a
search engine) but the core structure that a web site inherits from its underlying
application framework. In the literature, different types of dorks have been used
for different purposes, e.g., to automatically detect mis-configured web sites or
to list online shopping sites that are built using a particular CMS.

The widespread adoption of frameworks on one side, and the ability to abuse
search engines to fingerprint them on the other, had a very negative impact
on web security. In fact, this combination lead to complete automation, with
attackers running autonomous scout and exploitation bots, which scan the web
for possible targets to attack with the corresponding exploit [2]. Therefore, we
believe that a first important step towards securing web applications consists of
breaking this automation. Researcher proposed software diversification [3] as a
way to randomize applications and diversify the targets against possible attacks.
However, automated diversification approaches require complex transformations
to the application code, are not portable between different languages and tech-
nologies, often target only a particular class of vulnerabilities, and, to the best
of our knowledge, have never been applied to web-based applications.

In this paper we present a different solution, in which a form of diversification
is applied not to prevent the exploitation phase, but to prevent the attackers
from fingerprinting vulnerable applications. We start our study by performing
a systematic analysis of Google Dorks, to understand how they are created and
which information they use to identify their targets. While other researchers
have looked at the use of dorks in the wild [4], in this paper we study their
characteristics and their effectiveness from the defendant viewpoint. We focus in
particular on two classes of dorks, those based on portions of a website URL, and
those based on a specific sequence of terms inside a web page. For the first class,
we propose a general solutions – implemented in an Apache Module – in which
we obfuscate the structure of the application showing to the search engine only
the information that is relevant for content indexing. Our approach does not
require any modification to the application, and it is designed to work together
with existing search engine optimization techniques.

If we exclude the use of simple application banners, dorks based on generic
word sequences are instead rarely used in practice. Therefore, as a first step we
created a tool to measure if this type of dorks is feasible, and how accurate it is
in fingerprinting popular CMSes. Our tests show that our technique is able to
generate signatures with over 90 % accuracy. Therefore, we also discuss possible
countermeasures to prevent attackers from building these dorks, and we propose
a novel technique to remove the sensitive framework-related words from search
engines results without removing them from the page and without affecting the
usability of the application.

Google Dorks: Analysis, Creation, and New Defenses 257

To conclude, this paper makes the following contributions:

– We present the first comprehensive study of the mechanisms used by dorks
and we improve the literature classification in order to understand the main
issues and develop the best defenses.

– We design and implement a tool to block dorks based on URL information
without changing the Web application and without affecting the site ranking
in the search engines.

– We study dorks based on combinations of common words, and we implement a
tool to automatically create them and evaluate their effectiveness. Our exper-
iments demonstrate that it is possible to build a dork using non-trivial infor-
mation left by the Web application framework.

– We propose a simple but effective countermeasure to prevent dorks based on
common words, without removing them from the page.

Thanks to our techniques, we show that there are no more information avail-
able for an attacker to identify a web application framework based on the queries
and the results displayed by a search engine.

2 Background and Classification

The creation, deployment and maintenance of a website are complex tasks. In
particular, if web developers employ modern CMSes, the set of files that compose
a website contain much more information than the site content itself and such
unintentional traces may be used to identify possible vulnerabilities that can be
exploited by malicious users.

We identify two types of traces: (i) traces left by mistake that expose sensitive
information on the Internet (e.g., due to misconfiguration of the used tool), and
(ii) traces left by the Web Application Framework (WAF) in the core structure
of the website. While the former type of traces is simple to detect and remove,
the latter can be seen as a fingerprint of the WAF, which may not be easy to
remove since it is part of the WAF itself.

There are many examples of traces left by mistake. For instance, log files
related to the framework installation may be left in public directories (indexed
by the search engines). Such log files may show important information related
to the machine where the WAF is installed. The most common examples related
to the fingerprint of a WAF are the application banners, such as “Powered by
Wordpress”, which contain the name of the tool used to create the website.

Google Dorks still lack a formal definition, but they are typically associated
to queries that take advantage of advanced operators offered by search engines to
retrieve a list of vulnerable systems or sensitive information. Unfortunately this
common definition is vague (what type of sensitive information?) and inaccurate
(e.g., not all dorks use advanced operators). Therefore, in this paper we adopt
a more general definition of dorks: any query whose goal is to locate web sites
using characteristics that are not based on the sites content but on their structure
or type of resources. For example, a search query to locate all the e-commerce

258 F. Toffalini et al.

applications with a particular login form is a dork, while a query to locate e-
commerce applications that sell Nike shoes is not.

Dorks often use advance operators (such as inurl to search in a URL) to
look for specific content in the different parts of the target web sites. Below, we
show two examples of dorks, where the attacker looks for an installation log (left
by mistake) or for a banner string (used to fingerprint a certain framework):

inurl :"installer -log.txt" AND intext :" DUPLICATOR INSTALL -LOG"

intext :" Powered by Wordpress"

Note that all search engine operators can only be used to search keywords
that are visible to the end users. Any information buried in the HTML code,
but not visible, cannot be searched. This is important, since it is often possible
to recognize the tool that produced a web page by looking at the HTML code,
an operation that however cannot be done with a traditional search engine.

Since there are many different types of information that can be retrieved
from a search engine, there are many types of dorks that can be created. In the
following, we revise the classification used so far in the literature.

2.1 Existing Dorks Classification

Previous works (for a complete review, please refer to Sect. 6) divide dorks into
different categories, typically following the classification proposed in the Google
Hacking Database (GHDB) [5,6], which contains 14 categories. The criteria used
to define these categories is the purpose of the dork, i.e., which type of informa-
tion an attacker is trying to find. For instance, some of the categories are:

Advisories and Vulnerabilities: it contains dorks that are able to locate
various vulnerable servers, which are product or version-specific.

Sensitive Directories: these dorks try to understand if some directories (with
sensitive information) that should remain hidden, are made public.

Files Containing Passwords: these dorks try to locate files containing pass-
words.

Pages Containing Login Portals: it contains dorks to locate login pages for
various services; if such pages are vulnerable, they can be the starting point
to obtain other information about the system.

Error Messages: these dorks retrieve the pages or the files with errors messages
that may contain some details about the system.

Different categories often rely on different techniques – such as the use of
some advance operators or keywords – and target different parts of a website –
such as its title, main body, files, or directories.

While this classification may provide some hints on the sensitive information
a user should hide, the point of view is biased towards the attacker. From the
defendant point of view, it would be useful to have a classification based on the
techniques used to retrieve the information, so that it would be possible to check
if a website is robust against such techniques (independently from the aim for
which the technique is used). For this reason, in this paper we adopt a different
classification based on the characteristics of the dorks.

Google Dorks: Analysis, Creation, and New Defenses 259

2.2 Alternative Classification

We implemented a crawler to download all the entries in the GHDB [5,6] and
a set of tools to normalize each dork and automatically classify it based on the
information it uses1.

We have identified three main categories, which are not necessarily disjoint
and may be combined together in a single query:

URL Patterns: This category contains the dorks that use information present
in the structure of the URL.

Extensions: It contains the dorks used to search files with a specific extension,
typically to locate misconfigured pages.

Content-Based: These dorks use combination of words in the content of the
page – both in the body, and in the title.

Since the content-based category is wide, we subsequently split such category
into four sub-categories:

Application Banners: This category contains strings or sentences that identify
the underlying WAF (e.g., “Powered by Wordpress”). These banners can be
found in the body of the page (often in the foothold) or in the title.

Misconfiguration Strings: This category contains strings which correspond
to sensitive information left accessible by mistake by human faults (such as
database logs, string present in configuration files, or part of the default instal-
lation pages).

Errors Strings: Dorks in this category use special strings to locate unhandled
errors, such as the ones returned when a server-side script is not able to read
a file or it processes wrong parameters. Usually, besides the error, it is also
possible to find on the page extra data about the server-side program, or
other general information about the system.

Common Words: This class contains the dorks that do not fit in the other
categories. They are based on combinations of common words that are not
related to a particular application. For instance, these dorks may search for
(“insert”, “username”, and “help”) to locate a particular login page.

Table 1 shows the number of dorks for each category. Since some of the dorks
belongs to different categories, the sum of all categories is greater than the total
number of entries. The classification shows that most of the dorks are based on
banners and URL patterns. In particular, 89.5 % of the existing dorks use either
a URL or a banner in their query.

Besides the absolute number of dorks, it is interesting to study the evolution
of the dork categories over time. This is possible since the data from GHDB [6]
contains the date in which the dork was added to the database. Figure 1 shows
the percentage over time of the proposed dorks, grouped by category. It is inter-
esting to note that banner-based dorks are less and less used in the wild, probably
1 Not all dorks have been correctly classified automatically, so we manually inspected

the results to ensure a correct classification.

260 F. Toffalini et al.

Table 1. Number of dorks and relative percentage for the different categories. Since
a dork may belong to different categories, the sum of the entries of all categories is
greater than the total number of entries extracted from GHDB.

Category Number perc. (%)

URL pattern 2267 44

Extensions 318 6

Content-based Banners 2760 54

Misconfigurations 414 8

Errors 71 1

Common words 587 11

Total entries in GHDB [6] 5143

Fig. 1. Dorks evolution by category.

as a consequence of users removing those strings from their application. In fact,
their popularity decreased from almost 60 % in 2010 to around 20 % in 2015 –
leaving URL-based dorks to completely dominate the field.

2.3 Existing Defenses

Since the classification of the dorks has traditionally taken the attacker view-
point, there are few works that provide practical information about possible
defenses. Most of the them only suggests some best practices (e.g., remove all sen-
sitive information), without describing any specific action. Unfortunately, some
of these best practice are not compatible with Search Engine Optimizations
(SEOs). SEOs are a set of techniques used to improve the webpage rank – e.g.,
by including relevant keywords in the URL, in the title, or in the page headers.
When removing a content, one should avoid to affect such SEOs.

As previously noted, most of the dorks are based on banners and URL pat-
terns, with mis-configuration strings at the third place. While this last category
is a consequence of human faults, which are somehow easier to detect, the other
dorks are all based on the fingerprint of the WAFs.

Google Dorks: Analysis, Creation, and New Defenses 261

Banners are actually simple to remove, but the URL patterns are consider-
ably more complex to handle. In fact, the URL structure is inherited from the
underlying framework, and therefore one should modify the core structure of the
WAF itself – a task too complex and error prone for the majority of the users.
Finally, word-based dorks are even harder to handle because it is not obvious
which innocuous words can be used to precisely identify a web application.

In both cases we need effective countermeasures that are able to neutralize
such dorks. In the next sections, we show our solutions to these issues.

3 Defeating URL-Based Dorks

The URLs of a web application can contain two types of information. The first
is part of the structure of the web application framework, such as the name
of sub-directories, and the presence of default administration or login pages.
The second is part of the website content, such as the title of an article or the
name of a product (that can also be automatically generated by specific SEO
optimization plugins). While the second part is what a search engine should
capture and index, we argue that there is no reason for search engines to also
maintain information about the first one.

The optimal solution to avoid this problem would be to apply a set of random
transformations to the structure of the web application framework. However, the
diversity and complexity of these frameworks would require to develop an ad-hoc
solution for each of them. To avoid this problem, we implement the transforma-
tion as a filter in the web server. To be usable in practice, this approach needs
to satisfy some constraints. In particular, we need a technique that:

1. It is independent from the programming language and the WAF used to
develop the web site.

2. It is easily deployable on an existing web application, without the need to
modify the source code.

3. It supports dynamically generated URLs, both on the server side and on the
client side (e.g., through Javascript).

4. It can co-exist with SEO plugins or other URL-rewriting components.

The basic idea of our solution is to obfuscate (part of) the URLs using a
random string generated at installation time. Note that the string needs to be
random but it does not need to be secret, as its only role is to prevent an
attacker for computing a single URL that matches all the applications of a give
type accessible on the Web.

Our solution relies on two components: first, it uses standard SEO techniques
to force search engines to only index obfuscated URLs, and then applies a filter
installed in the web server to de-obfuscate the URLs in the incoming requests.

3.1 URL Obfuscation

The obfuscation works simply by XOR-ing part of the original URL with the
random seed. Our technique can be used in two different ways: for selective-
protection or for global protection. In the first mode, it obfuscates only particular

262 F. Toffalini et al.

pieces of URLs that are specified as regular expressions in a configuration file.
This can be used to selectively protect against known dorks, for instance based
on particular parameters or directory names.

When our solution is configured for global protection, it instead obfuscate all
the URLs, except for possible substrings specified by regular expressions. This
mode provides a better protection and simplifies the deployment. It can also
co-exist with other SEO plugins, by simply white-listing the portions of URLs
used by them (for example, all the URLs under /blog/posts/*). The advantage
of this solution is that it can be used out-of-the-box to protect the vast majority
of small websites based on popular CMSs. But it can also be used, by properly
configuring the set of regular expressions, to protect more complex websites that
have specific needs and non-standard URL schemes.

Finally, the user can choose to apply the obfuscation filter only to particu-
lar UserAgent strings. Since the goal is to prevent popular search engines from
indexing the original URLs, the entire solution only needs to be applied to the
requests coming from their crawlers. As we discuss in the next session, our tech-
nique works also if applied to all incoming requests, but this would incur a
performance penalty for large websites. Therefore, by default our deployment
only obfuscates the URLs provided to a configurable list of search engines2.

3.2 Delivering Obfuscated URLs

In this section, we explain our strategy to show obfuscated URLs, and hide
the original ones, in the results of search engines. The idea is to influence the
behavior of the crawlers by using common SEO techniques.

Redirect 301. The Redirect 301 is a status code of the HTTP protocol used
for permanent redirection. As the name suggests, it is used when a page changes
its URL, in combination with a “Location” header to specify the new URL to
follow. When the user-agent of a search engine sends a request for a cleartext
URL, our filter returns a 301 error with a pointer to the obfuscated URL.

The advantage of this technique is that it relies on a standard error code
which is supported by the all the search engines we tested. Another advantage
of this approach is that the search engines move the current page rank over to
the target of the redirection. Unfortunately, using the 301 technique alone is not
sufficient to protect a page, as some search engines (Google for instance) would
store in their database both the cleartext and the obfuscated URL.

Canonical URL Tag. The Canonical URL Tag is a meta-tag mainly used in
the header of the HTML documents. It is also possible to use this tag as HTTP
header to manage non-HTML documents, such as PDF files and images. Its main
purpose is to tell search engines what is the real URL to show in their results.

For instance, consider two pages that show the same data, but generated
with a different sorting parameter, as follow:

2 Here we assume that search engines do not try to disguise their requests, as it is the
case for all the popular ones we encountered in our study.

Google Dorks: Analysis, Creation, and New Defenses 263

http://www.abc.com/order-list.php?orderby=data\&direct=asc
http://www.abc.com/order-list.php?orderby=cat\&direct=desc

In the example above, the information is the same but the two pages risk to
be indexed as two different entries. The Canonical tag allows the site owner to
show them as a single entry, improving the page rank. It is also important that
there is only a single tag in the page, as if more tags are presents search engines
would ignore them all.

Our filter parses the document, and it injects a Canonical URL Tag with the
obfuscated URL. To avoid conflict with other Canonical URL Tags, we detect
their presence and replace their value with the corresponding obfuscated version.

A drawback of this solution is that the Canonical URL Tag needs to contain
a URL already present in the index of the search engine. If the URL is not
indexed, the search engine ignores the tag. This is the reason why we use this
technique in conjunction with the 301 redirection.

Site Map. The site map is an XML document that contains all the public links
of a web site. The crawler uses this document to get the entire list of the URLs
to visit. For instance, this document is used in blogs to inform the search engine
about the existence of new entries, as for the search engine it is more efficient to
poll a single document rather than crawling the entire site each time.

If a search engine tries to get a site map, our filter replaces all the URLs with
their obfuscated versions. This is another technique to inform the crawler about
the site structure and populate its cache with the obfuscated URLs.

Obfuscation Protocol. In this section, we show how the previous techniques
are combined together to obtain our goal. Figure 2 shows the behavior of our tool
when a crawler visits a protected web site. When the crawler requests a resource
‘a’ our tool intercepts the request and redirect it to the obfuscated URL O(a).
The crawler then follows the redirect and requests the obfuscated resource. In
this case, the system de-obfuscates the request, and then serves it according to
the logic of the web site. When the application returns the result page, our filter
adds the Canonical URL Tag following the rules described previously.

In Fig. 2, we also show how the tool behaves when normal users visit the web
site. Typically, users would first request an obfuscated URL (as returned by a
query to a search engine, for example). In this case, the request is de-obfuscated
and forwarded to the web application as explained before. This action incurs
a small penalty in the time required to serve the requests. However, once the
user gets the page back, he can interact with the websites following links and/or
forms that contain un-obfuscated URLs. In this case, the requests are served by
the web server without any additional computation or delay.

Even if this approach might appear as a form of cloaking, the clocking defi-
nition requires an application to return different resources for a crawler and for
other clients, as described in the guidelines of the major search engines [7–9].
Our technique only adds a meta-tag to the page, and does not modify the rest
of the content and its keywords.

http://www.abc.com/order-list.php?orderby=data&direct=asc
http://www.abc.com/order-list.php?orderby=cat&direct=desc

264 F. Toffalini et al.

Browser URL Obfuscator Web site

O(a)

a

resp. of a

resp. of a

b

b

resp. of b

resp. of b

Crawler URL Obfuscator Web site

a

redirect to O(a)

O(a)

a

resp. of a

resp. of a + canonical tag

Fig. 2. On the left side: messages exchanged between a protected application ad a
normal user. On the right side: messages exchanged between a protected application
and a search engine crawler.

3.3 Implementation

Our approach is implemented as a module for the Apache web server. When
a web site returns some content, Apache handles the data using the so-called
buckets and brigades. Basically, a bucket is a generic container for any kind of
data, such as a HTML page, a PDF document, or an image. In a bucket, data
is simply organized in an array of bytes. A brigade is a linked list of buckets.
The Apache APIs allow to split a bucket and re-link them to the corresponding
brigade. Using this approach, it is possible to replace, remove, or append bytes
to a resource, without re-allocating space. We use this technique to insert the
Canonical URL Tag in the response, and to modify the site map. In addition,
the APIs also permit to manage the header of the HTTP response, and our tool
use this feature in order to add the Canonical URL Tag in the headers.

Since the Apache server typically hosts several modules simultaneously, we
have configured our plugin to be the last, to ensure that the obfuscation is applied
after any other URL transformation or rewriting step. Our obfuscation module
is also designed to work in combination with the deflate module. In particular,
it preserves the compression for normal users but it temporarily deactivate the
module for requests performed by search engine bots. The reason is that a client
can request a compressed resource, but in this case our module is not able to
parse the compressed output to insert the Canonical Tag or to obfuscate the
URLs in the site-map. Therefore, our solution removes the output compression
from the search engine requests – but still allows compressed responses in all
other cases.

Finally, to simplify the deployment of our module, we developed an instal-
lation tool that takes as input a web site to protect, generate the random seed,
analyzes the site URL schema to create the list of exception URLs, and generate
the corresponding snippet to insert into the Apache configuration file. This is
sufficient to handle all simple CMS installations, but the user can customize the
automatically generated configuration to accommodate more complex scenarios.

Google Dorks: Analysis, Creation, and New Defenses 265

3.4 Experiments and Results

We tested our solution on Apache 2.4.10 running two popular CSMs: Joomla!
3.4, and Wordpress 4.2.5. We checked that our websites could be easily identified
using dorks based on “inurl:component/user” and “inurl:wp-content”.

We then protected the websites with our module and verified that a number
of popular search engines (Google, Bing, AOL, Yandex, and Rambler) were only
able to index the obfuscated URLs and therefore our web sites were no longer
discoverable using URL-based dorks.

Finally, during our experiments we also traced the number of requests we
received from search engines. Since the average number was 100 access per day,
we believe that our solution does not have any measurable impact on the per-
formance of the server or on the network traffic.

4 Word-Based Dorks

As we already observed in the Sect. 2, dorks based on application banners are
rapidly decreasing in popularity, probably because users started removing these
banners from their web applications. Therefore, it is reasonable to wonder if is
also possible to create a precise fingerprint of an application by using only a set
of generic and seemingly unrelated words.

This section is devoted to this topic. In the first part we show that it is indeed
possible to automatically build word-based dorks for different content manage-
ment systems. Such dorks may be extremely dangerous because the queries sub-
mitted to the search engines are difficult to detect as dorks (since they do not
use any advanced operator or any string clearly related to the target CMS). In
the second part, we discuss possible countermeasures for this type of dorks.

4.1 Dork Creation

Given a set of words used by a CMS, the search for the optimal combination
that can be used as fingerprint has clearly an exponential complexity. Therefore,
we need to adopt a set of heuristics to speed up the generation process. Before
introducing our technique we need to identify the set of words to analyze, and
the criteria used to evaluate such words.

Building Blocks. The first step to build a dork is to extract the set of words
that may characterize the CMS. To this aim, we start from a vanilla installation
of the target website framework, without any modification or personalization.
From this clean instance, we remove the default lorem ipsum content, such as
“Hello world” or “My first post”. Then, using a custom crawler, our tool extracts
all the visible words from all the pages of the web site, i.e., the words that are
actually displayed by a browser and that are therefore indexed by search engines.
After removing common stop words, usually discarded also by the search engines
(e.g., and, as, at, . . .), our crawler groups the remaining words by page and also
maintains a list with all the words encountered so far.

266 F. Toffalini et al.

In order to build an automatic tool that creates word-based dorks for the
different CMSes, we need two additional building blocks: (i) a set of APIs to
interrogate a search engine, and (ii) an oracle that is able to understand if a
website has been created with a specific CMS.

As for the APIs, we make use of the Bing APIs in order to submit a query to
the Bing search engine. Clearly, any other search engine would be equivalent: we
have chosen Bing since it has less restrictions in terms of the number of queries
per day that a user can make. Given a query, Bing provides the total number
of entries found for that query: this value represents the coverage of a query.
Among these entries, our tool retrieve the first 1000 results. For each of these
pages, we use the Wappalyzer-python library [10] to confirm whether the page is
built using the target CMS. Wappalyzer looks at the HTML code of the page and
tries to understand if there are traces left by a given CMS: this is fundamentally
different from looking at the visible words, because to take a decision the tool
needs to process the HTML content of the web page that is not indexed by the
traditional search engines. Using this technique, we compute the hit rank, i.e.,
the number of results that are actually built with a given CMS divided by the
number of results obtained by the query3.

To build a dork, we need to evaluate its precision during the building process:
the precision is a combination of the coverage and the hit rank, i.e., a good dork
is the one that obtains the largest number of results with the highest accuracy.

Dork Generation. The basic idea used in our prototype is to build the dork
step by step, adding one word at a time in a sort of gradient ascent algorithm.
The first observation is that when a new word is added to an existing dork, its
coverage can only decrease, but the hit rank may increase or decrease. As an
example, in Fig. 3 we show the impact of adding a new word wi while building a
dork (in this case, the initial dork contained three words, with a hit rank equal
to 30 %). For each word wi we measure the new coverage and the new hit rank
of the whole dork (three words with the addition of wi), and we order the results
according to the hit rank. As we can see, half of the new words decreases the
hit rank, and therefore can be discarded from our process. Words that result in
a higher hit rank usually considerably decrease the coverage – i.e., they return
very few results. The goal is to find the best compromise, where we still retain
a sufficiently high coverage while we increase the hit rank.

Our solution is to compute at each step the median coverage of all the candi-
date words for which the hit rank increases – shown in the figure as an horizontal
dashed line at 16.6 M; we then choose the word that provides the highest hit rank
and a coverage above the median – in this case, the word “posts”.

The complete algorithm is shown in Algorithm 1. One of the inputs to the
procedure is an initial set of words D for a given page, i.e., a basic dork to which
new words should be added. Ideally we should start from an empty dork, and
then we should evaluate the first word to add. However, since the coverage and
the hit rank of a single word may be extremely variable, we decided to start
3 For efficiency reasons, we compute the hit rank by visiting a random sample that

covers 30% of the first 1000 results.

Google Dorks: Analysis, Creation, and New Defenses 267

Fig. 3. Evolution of hit rank and coverage for a dork while adding different words.

from an initial dork of at least three words, so that to obtain meaningful values
for the coverage and the hit rank.

As initial dork, we have chosen the top three words with the highest coverage
(singularly) and that would provide a hit rank higher than 30 % (together).
While the choice of the initial point may seem critical, we have tested different
combinations of words obtaining similar results (in terms of final coverage and
hit rank). However, it is important to stress the fact that our goal is not to find
the best dork, but to find at least one that can be used to find websites created
with a specific CMS. In other words, our algorithm can return a local optimum
solution that changes depending on the initial point. However, any dork that
provides results in the same order of magnitude of other classes of dorks (such
as URL or banner-based) is satisfactory for our study.

The other input of the procedure is the set of words V that has been extracted
from the vanilla instance of the CMS, without the words used in the starting
dork, i.e., V ′ = V \ D. Finally, we need to specify which CMS should be used to
compute the hit rank.

The algorithm keeps adding words to the dork until the final hit rank is
greater than or equal to 90 % or there are no more words to add. For each word
in V ′, it computes the new hit rank and the new coverage, and it stores the entry
in a table only if the word improves the hit rank (line 10).

If none of the words are able to improve the hit rank (line 14), the algo-
rithm stops and returns the current dork. Otherwise, the algorithm computes
the median coverage which is used as a reference to obtain the best word. The
best word is the word with the highest hit rank among the ones with a cover-
age above the median. Finally, the best word is added to the dork and removed
from V ′.

Experiments and Results. In order to test our solution, we consider five well
known Web Application Frameworks: three general purpose CMSes (Wordpress,
Joomla!, and Drupal) and two E-Commerce CMSes (Magento and OpenCart).

268 F. Toffalini et al.

Algorithm 1. Our algorithm to create a word-based dork
1: procedure getDork(D,V′,CMS)
2: url list ← apiBing.search(D) � retrive a list of URL given D
3: max hr ← calcHitRank(url list,CMS) � calculate hit rank from URL List
4: while max hr < 90% ∧ V′ �= ∅ do
5: table ← empty()
6: for all w ∈ V′ do
7: cov ← calcCoverage(D ∪ w)
8: url list ← api bing.search(D ∪ w)
9: hr ← calcHitRank(url list,CMS)

10: if hr > max hr then
11: table ←row (w, hr, cov)
12: end if
13: end for
14: if table == ∅ then
15: return D � final dork
16: end if
17: median ← calcMedian(table)
18: (best word, hr) ← getBestWord(table, median)
19: D ← D ∪ best word
20: max hr ← hr
21: V′ ← V′ \ {best word}
22: end while
23: return D � final dork

24: end procedure

We run the tests on a machine with Ubuntu 15.10, Python 3.4, BeautifulSoup,
and Wappalyzer-python.

For each CMS, we have created dorks starting from two different installations:

– Vanilla: we consider the basic out-of-the-box installation, with no changes to
the default website obtained from the CMS;

– Theme: we add some personalization to the website, such as changing the
basic graphical theme.

For two CMSes, Drupal and Opencart, the lists of words extracted with our
crawler from the two installations (Vanilla and Theme) are the same, therefore
the dorks obtained from the Vanilla and Theme installations are the same too.

We compare the results of the dorks created with our tool with the banner-
based dorks. Table 2 shows, for each CMS, the hit rank and the coverage for the
two dorks (derived from the Vanilla and Theme installations), as well as for the
dork taken as a reference.

The results show that our dorks obtain a coverage with the same order of
magnitude of the reference dork, with similar hit rank, i.e., they are as effective as
banner-based dorks in finding targeted CMSes. It is interesting to note also that
the differences between the Vanilla and the Theme dorks are small, suggesting
that minor customizations of the website have little impact on our methodology.

Customized Websites. While a little customization have a small impact on the
effectiveness of the dorks we created, it is interesting to understand if, instead,
major modifications may make our methodology ineffective. In other words, we
investigate if customization can compromise the fingerprint left by the CMS,
and implicitly be a countermeasure to word-based dorks.

Google Dorks: Analysis, Creation, and New Defenses 269

Table 2. Hit rank and coverage of the dorks created with our GetDork tool, compared
with a reference banner-based dork. For each CMS, we consider the dorks derived from
two installations, Vanilla and Theme.

Vanilla Theme Reference

Wordpress 93.8 % 74.1 % 96.7 % hits

47.1 M 22 M 83.6 M cover

Joomla 87.8 % 75.6 % 88.7 % hits

7.24 M 1.44 M 3.73 M cover

Drupal 82.7 % 82.7 % 99.7 % hits

7.87 M 7.87 M 3.27 M cover

Magento 87.1 % 93.2 % 85.2 % hits

0.39 M 0.22 M 0.68 M cover

OpenCart 89.1 % 89.1 % 99.8 % hits

0.59 M 0.59 M 1.42 M cover

Fig. 4. Graph of common words for CMSs

To this aim, we selected and analyzed a set of popular websites built with
known CMSes but largely customized, such as www.toyota.com, www.linux.com,
and www.peugeot.com. For each CMS, we collected ten websites and extracted
the list of words with our crawler. We then compared these lists with the corre-
sponding lists extracted from the vanilla instances. Figure 4 shows the percentage
of common words that each customized website has with the vanilla instance – for
each CMS we have ordered the websites according to this percentage, therefore
the x-axis shows the ranking, and not a specific website.

The point where the x-axis is labeled with “v” represents the vanilla
instances, while the point “a” represents the intersection of all custom websites
for that CMS with the vanilla instance. These points indicate the percentage of
words that are common to all the websites, including the vanilla, and therefore
represent the starting point for the creation of a dork. Except for Wordpress,

www.toyota.com
www.linux.com
www.peugeot.com

270 F. Toffalini et al.

most of the customized websites have high percentage of common words with
the vanilla instance. Nevertheless, finding a common subset of words is not easy.
We have actually tried to build a dork starting from the intersection of the sets
of words of all the customized website and the vanilla instance, and we were
successful only for Drupal and Opencart. This means that large customizations
may be indeed a countermeasure for word-based dorks, but not for all CMSes.
It is also important to note that such high customization is typical of a lim-
ited number of websites that are managed by large organizations, therefore the
probability that such websites are vulnerable due to limited maintenance is not
high.

4.2 Defense Against Word-Based Dorks

In the previous sections, we discuss an alternative method to create dorks using
a combination of common words. While slightly less effective than banner-based
dorks, we were able to achieve a relevant combination of hit rank and coverage,
showing that this technique can be used by criminals to locate their victims.

To protect against this threat, we propose a simple solution in which we insert
invisible characters into the application framework keywords. Luckily, in the
Unicode standard there is a set of empty special characters that are not rendered
in web browser. Thus, the appearance of the web sites does not change but
a search engine would index the keywords including these invisible characters,
preventing an attacker from finding these keywords in her queries. This technique
also allows the obfuscation of the application banners without removing them.

Moreover, this technique does not influence the search engine optimization
and ranking, because the obfuscated keywords are only part of the template,
and not of the website content. In our prototype we use the Invisible Separator
character with code “U+2063” in the Unicode standard. As the name suggests,
it is a separator between two characters that does not take any physical space
and it is used in mathematical applications to formally separate two indexes
(e.g., ij). It is possible to insert this character in the HTML page using the
code “⁣”. For instance, an HTML code for a banner like “Powered by
Wordpress” can be automatically modified to:

<div class ="site -info">

Power ⁣ed by Wor⁣dpress

</div >

The characters are ignored by search engines, effectively breaking each keyword
in a random combination of sub-words. Obviously, this technique only works if
a random number of invisible characters are placed at random locations inside
each template keyword, so that each web application would have a different
footprint. The highest combination that can be obtained using this technique is
on the order of magnitude of O(2n), where n is the sum of entire characters of
all the words that can be used to create a signature.

Google Dorks: Analysis, Creation, and New Defenses 271

To test the effectiveness of this solution, we created a test web site containing
two identical pages – one of which uses our system to obfuscate its content using
the invisible separator character. We then performed queries on Google, Bing,
AOL, and Rambler and we were able to confirm that all of them properly indexed
the content of web site. However, while it was possible to find the website by
searching for its cleartext content, we were not able to locate the obfuscated
page by querying for its keywords.

5 Discussion

When a new vulnerability is disclosed, attackers rely on the ability to quickly
locate possible targets. Nowadays, this is usually done by exploiting search
engines with specially crafted queries called dorks. In Sect. 2.2 we showed that
there are three main ways to fingerprint an application: using banner strings,
using URL patterns, or using combination of words. The first type is easy to
prevent, and in fact many popular websites are not identifiable in this way. This
is also confirmed by our longitudinal study, which shows that the percentage of
dorks belonging to this category is steadily decreasing over time.

In this paper we show that it is also possible to prevent the other two classes of
dorks, without affecting the code or the rank of a web application. We believe this
is a very important result, as it undermines one of the main pillar of automated
web attacks. If criminals were unable to use dorks to locate their target, they
would need to find workarounds that, however, either increase the cost or reduce
the coverage of their operations.

The only way left to fingerprint an application is by looking at its HTML
code. To do that, attacker needs to switch to special search engines that also
index the raw content of each web pages. However, these tools (such as Mean-
path [11]) have a much smaller coverage compared to traditional search engines,
and typically require the user to pay a registration to get the complete list of
results. Either way, this would slow down and reduce the number of attacks.
Another possible venue for criminals would be to implement their own crawlers,
using special tools that can automatically identify popular CMS and web appli-
cation frameworks (such as Blind Elephant [12] and WhatWeb [13]). However,
this requires a non negligible infrastructure and amount of time, so again it
would considerably raise the bar – successfully preventing most of the attacks
that are now compromising million of web sites.

6 Related Work

Google hacking has been the subject of several recent studies. Most of them
discuss tricks and techniques to manually build dorks, and only few propose
limited defenses, statistics, or classification schemes.

Moore and Clayton [14] studied the logs of compromised websites, and iden-
tified three classes of “evil queries”: the ones looking for vulnerabilities, the ones
looking for already compromised websites, and the ones looking for web shells.

272 F. Toffalini et al.

SearchAudit [15] is a technique used to recognize malicious queries from the
logs of a search engine. The study provides an interesting perspective on dorks
that are used in the wild. In particular, the authors identify three classes of
queries: to detect vulnerable web sites, to identify forums for spamming, and
a special category used in Windows Live Messenger phishing attacks. While
the first category is predominantly dominated by URL-based and banner-based
dorks, the forum identification also included common strings such as “Be the first
to comment this article”. John et al., [16] then use SearchAudit to implement an
adaptive Honeypot that changes its content in order to attract malicious users
and to study their behaviors. The purpose of the study is to gain information
about the attackers, and not to propose countermeasures.

Two books discuss Google Hacking: “Google Hacking for Penetration
Tester” [1] and “Hacking: The Next Generation” [17]. Both of them show the
techniques required to build dorks [18,19] using banner strings or URL pat-
terns. These books adopt the same classification proposed by Johnny Long [5]
and exploit-db.com [6]. As we already discussed in Sect. 2, this classification is
focused on the goal of the dork (e.g., detect a vulnerable web sites, the pres-
ence of sensitive directories, or a mis-configuration error), while, in our work,
we propose a classification based on the information that are used to build the
fingerprint. Moreover, the defenses proposed in these books, as well as the ones
proposed by Lancor [20], only discuss simple best practices – such as removing
the name of the web application framework from the HTML footer.

Zhang et al., [4] study the type of vulnerabilities searched by the dorks (such
as SQL-injection, XSS, or CSRF), and they compared them with the corre-
sponding CVE. The authors also study the relation between dorks and advanced
operators, but without considering the countermeasures as we do in this paper.
Pelizzi et al. [21] propose a technique to create URL-based dorks to automat-
ically look-up web sites affected by XSS vulnerabilities. Other works, such as
Invernizzi et al. [22], and Zhang et al. [23], propose different techniques to create
word dorks to identify malicious web sites. Their aim is to enlarge a database
of compromised pages and not to find a fingerprint for a target web applica-
tion framework. They create word dorks only with the common content of the
infected pages without discussing how to improve the quality of the results.

Billing et al. [24] propose a tool to tests a list of provided dorks to find the
ones that match a given web site. Similarly, several tools exist to audit a target
site using public dorks databases, such as GooScan [25], Tracking Dog [26], or
Diggity [27]. Sahito et al. [28] show how dorks can be used to retrieve private
information from the Web (e.g., credit card numbers, private addresses, and tele-
phone numbers). Similarly, Tath et al. [29,30] show how to use Google hacking
in order to find hashed password, private keys or private information.

The literature also includes works not strictly related to dorks, but that deal
with the problem of similarity of Web pages. For example, Soska et al. [31]
show a correlation between attacked Web sites and future victims. The authors
use comparison techniques (which include DOM features, common words, and
URL patterns) in order to demonstrate that Web pages with similar features of

http://exploit-db.com

Google Dorks: Analysis, Creation, and New Defenses 273

compromised ones have high probability to be attacked too. Vasel et al. [32] use
a database of compromised Web sites to calculate a risk-factor of future victims.
They also seek common features of Web pages as Soska. Although their aims is
different from ours, it could be intriguing to use their approach to improve our
algorithm to create word-based dorks.

Finally, some studies discuss dorks as a propagation vector for malware.
For example, Cho et al., [33] show a technique to retrieve C&C botnet servers
using Google Hacking. Provos et al., [28] and Yu et al., [34] analyze a set of
worms able to find other vulnerable machines using dorks. In these papers, the
authors propose a system to block the malicious queries in order to stop the
worm propagation.

7 Conclusion

In this paper we presented the first study about the creation, classification, and
accuracy of different categories of Google dorks. We started by improving previ-
ous classifications by performing an analysis of a large database of dorks used in
the wild. Our measurements showed that most of the dorks are based on URL
patterns or banner strings, with the last category in constant declining. There-
fore, we proposed a novel technique to randomize parts of the website URLs,
in order to hide information that can be used as fingerprint of the underlying
WAF. Our tool, implemented as a module for the Apache web server, does not
require any modification to the sources of the WAF, and it does not decrease
the rank of the web site.

We then showed how it is possible to combine common words in a CMS
template to build a signature of a web application framework, with an accuracy
and a coverage comparable to URL-based dorks. We implemented a tool to
build these signatures and tested it on five popular CMS applications. Finally,
we proposed a new technique to prevent this kind of dorks. The idea is inject
invisible Unicode characters in the template keywords, which does alter the web
site appearance or its usability.

References

1. Long, J., Skoudis, E.: Google Hacking for Penetration Testers. Syngress, Rockland
(2005)

2. Provos, N., McClain, J., Wang, K.: Search worms. In: Proceedings of the 4th ACM
Workshop on Recurring Malcode, pp. 1–8 (2006)

3. Christodorescu, M., Fredrikson, M., Jha, S., Giffin, J.: End-to-end software diver-
sification of internet services. Moving Target Defense 54, 117–130 (2011)

4. Zhang, J., Notani, J., Gu, G.: Characterizing Google hacking: a first large-scale
quantitative study. In: Tian, J., et al. (eds.) SecureComm 2014. LNICST, vol. 152,
pp. 602–622. Springer, Heidelberg (2015). doi:10.1007/978-3-319-23829-6 46

5. Johnny Google hacking database. http://johnny.ihackstuff.com/ghdb/
6. Exploit database. https://www.exploit-db.com/

http://dx.doi.org/10.1007/978-3-319-23829-6_46
http://johnny.ihackstuff.com/ghdb/
https://www.exploit-db.com/

274 F. Toffalini et al.

7. Yandex cloacking condition. https://yandex.com/support/webmaster/yandex-
indexing/webmaster-advice.xml

8. Baidu cloacking condition. http://baike.baidu.com/item/Cloaking
9. Google cloacking condition. https://support.google.com/webmasters/answer/663

55?hl=en
10. Wappalyzer-python. https://github.com/scrapinghub/wappalyzer-python
11. meanpath. https://meanpath.com/
12. Blind elephant. https://community.qualys.com/community/blindelephant
13. Whatweb. http://www.morningstarsecurity.com/research/whatweb
14. Moore, T., Clayton, R.: Evil searching: compromise and recompromise of internet

hosts for phishing. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628,
pp. 256–272. Springer, Heidelberg (2009)

15. John, J.P., Yu, F., Xie, Y., Abadi, M., Krishnamurthy, A.: Searching the searchers
with searchaudit. In: Proceedings of the 19th USENIX Conference on Security,
Berkeley, CA, USA, p. 9 (2010)

16. John, J.P., Yu, F., Xie, Y., Krishnamurthy, A., Abadi, M.: Heat-seeking honeypots:
design and experience. In: Proceedings of WWW, pp. 207–216 (2011)

17. Michael, K.: Hacking: The Next Generation. Elsevier Advanced Technology, Oxford
(2012)

18. Google advanced operators. https://support.google.com/websearch/answer/2466
433?hl=en

19. Bing advanced operators. https://msdn.microsoft.com/en-us/library/ff795667.
aspx

20. Lancor, L., Workman, R.: Using Google hacking to enhance defense strategies.
In: Proceedings of the 38th SIGCSE Technical Symposium on Computer Science
Education, pp. 491–495 (2007)

21. Pelizzi, R., Tran, T., Saberi, A.: Large-scale, automatic XSS detection using Google
dorks (2011)

22. Invernizzi, L., Comparetti, P.M., Benvenuti, S., Kruegel, C., Cova, M., Vigna, G.:
Evilseed: a guided approach to finding malicious web pages. In: IEEE Symposium
on Security and Privacy, pp. 428–442 (2012)

23. Zhang, J., Yang, C., Xu, Z., Gu, G.: PoisonAmplifier: a guided approach of dis-
covering compromised websites through reversing search poisoning attacks. In:
Balzarotti, D., Stolfo, S.J., Cova, M. (eds.) RAID 2012. LNCS, vol. 7462, pp.
230–253. Springer, Heidelberg (2012)

24. Billig, J., Danilchenko, Y., Frank, C.E.: Evaluation of Google hacking. In: Pro-
ceedings of the 5th Annual Conference on Information Security Curriculum Devel-
opment, pp. 27–32. ACM (2008)

25. Gooscan. http://www.aldeid.com/wiki/Gooscan
26. Keßler, M., Lucks, S., Tatlı, E.I.: Tracking dog-a privacy tool against Google hack-

ing. In: CoseC b-it, p. 8 (2007)
27. Pulp google hacking: the next generation search engine hacking arsenal
28. Sahito, F., Slany, W., Shahzad, S.: Search engines: the invader to our privacy -

a survey. In: International Conference on Computer Sciences and Convergence
Information Technology, pp. 640–646, November 2011

29. Tatlı, E.I.: Google hacking against privacy (2007)
30. Tatlı, E.I.: Google reveals cryptographic secrets. In: Kryptowochenende 2006-

Workshop über Kryptographie Universität Mannheim, p. 33 (2006)
31. Soska, K., Christin, N.: Automatically detecting vulnerable websites before they

turn malicious. In: Proceedings of USENIX Security, San Diego, CA, pp. 625–640
(2014)

https://yandex.com/support/webmaster/yandex-indexing/webmaster-advice.xml
https://yandex.com/support/webmaster/yandex-indexing/webmaster-advice.xml
http://baike.baidu.com/item/Cloaking
https://support.google.com/webmasters/answer/66355?hl=en
https://support.google.com/webmasters/answer/66355?hl=en
https://github.com/scrapinghub/wappalyzer-python
https://meanpath.com/
https://community.qualys.com/community/blindelephant
http://www.morningstarsecurity.com/research/whatweb
https://support.google.com/websearch/answer/2466433?hl=en
https://support.google.com/websearch/answer/2466433?hl=en
https://msdn.microsoft.com/en-us/library/ff795667.aspx
https://msdn.microsoft.com/en-us/library/ff795667.aspx
http://www.aldeid.com/wiki/Gooscan

Google Dorks: Analysis, Creation, and New Defenses 275

32. Vasek, M., Moore, T.: Identifying risk factors for webserver compromise. In: Finan-
cial Cryptography and Data Security, pp. 326–345 (2014)

33. Cho, C.Y., Caballero, J., Grier, C., Paxson, V., Song, D.: Insights from the inside:
a view of botnet management from infiltration. In: Proceedings of the USENIX
Workshop on Large-Scale Exploits and Emergent Threats, San Jose, CA, April
2010

34. Yu, F., Xie, Y., Ke, Q.: Sbotminer: large scale search bot detection. In: ACM
International Conference on Web Search and Data Mining, February 2010

	Google Dorks: Analysis, Creation, and New Defenses
	1 Introduction
	2 Background and Classification
	2.1 Existing Dorks Classification
	2.2 Alternative Classification
	2.3 Existing Defenses

	3 Defeating URL-Based Dorks
	3.1 URL Obfuscation
	3.2 Delivering Obfuscated URLs
	3.3 Implementation
	3.4 Experiments and Results

	4 Word-Based Dorks
	4.1 Dork Creation
	4.2 Defense Against Word-Based Dorks

	5 Discussion
	6 Related Work
	7 Conclusion
	References

